On selection of semiparametric spatial regression models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models.

We propose a general strategy for variable selection in semiparametric regression models by penalizing appropriate estimating functions. Important applications include semiparametric linear regression with censored responses and semiparametric regression with missing predictors. Unlike the existing penalized maximum likelihood estimators, the proposed penalized estimating functions may not pert...

متن کامل

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

Covariate selection for semiparametric hazard function regression models

We study a flexible class of non-proportional hazard function regression models in which the influence of the covariates splits into the sum of a parametric part and a time-dependent nonparametric part. We develop a method of covariate selection for the parametric part by adjusting for the implicit fitting of the nonparametric part. Our approach is based on the general model selection methodolo...

متن کامل

Variable Selection in Semiparametric Regression Modeling By

In this paper, we are concerned with how to select significant variables in semiparametric modeling. Variable selection for semiparametric regression models consists of two components: model selection for nonparametric components and selection of significant variables for the parametric portion. Thus, semiparametric variable selection is much more challenging than parametric variable selection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stat

سال: 2019

ISSN: 2049-1573,2049-1573

DOI: 10.1002/sta4.221